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INFLUENCE OF METEOROLOGICAL TIME FRAME AND

VARIATION ON HORIZONTAL DISPERSION COEFFICIENTS

IN GAUSSIAN DISPERSION MODELING

B. K. Fritz,  B. W. Shaw,  C. B. Parnell, Jr.

ABSTRACT. The air pollution regulatory process involves the permitting of sources of regulated pollutants. This process
requires sources to demonstrate that the National Ambient Air Quality Standards (NAAQS) are not exceeded as a result of
released pollutants. A determination of a facility’s compliance with the NAAQS is more frequently being based on dispersion
modeling estimates rather than ambient air sampling results. Current Gaussian-based dispersion models do not adequately
account for pollutant dispersion due to sub-hourly variations in wind speed and direction. This can result in overestimates
of downwind concentration and consequentially require costly additional control measures or denial of a construction or
operating permit. This research focuses on developing a methodology to analyze the theoretical degree of dispersion within
sub-hourly and hourly intervals. The methodology employed to develop the presently used Pasquill-Gifford (PG) dispersion
coefficients  is explored and used in developing a new methodology for estimating theoretical dispersion coefficients based
on recorded meteorological data. This comparison allowed for an appropriate application time period of the PG dispersion
coefficients  to be determined, which in general varied from 3 to 20 min. The most critical result of this research is that universal
application of the PG dispersion coefficients to a 1 h time period is incorrect. This misapplication will result in concentration
estimates based on insufficient plume spread, which will overestimate downwind concentrations and result in inappropriate
regulation of emitting sources.

Keywords. Atmospheric stability, Dispersion modeling, Gaussian modeling, Pasquill stability parameters, Plume spread,
Stability parameter.

he Federal Clean Air Act (FCAA) of 1960 and sub-
sequent amendments established national goals for
air quality and incorporated the use of standards for
the control of pollutants in the environment. The

1970 FCAA Amendments (FCAAA) provided the authority
to create the Environmental Protection Agency (EPA) and re-
quired the EPA to establish National Ambient Air Quality
Standards (NAAQS) (U.S. EPA, 1996). The NAAQS are
composed of primary standards (based on protecting against
adverse health effects of listed criteria pollutants among sen-
sitive population groups) and secondary standards (based on
protecting public welfare, e.g., impacts on vegetation, crops,
ecosystems, visibility, climate, man-made materials, etc.)
The FCAA is the predominate piece of legislation that pro-
vides State Air Pollution Regulatory Agencies (SAPRA) the
authority to regulate sources of air pollution. These regulato-
ry programs have traditionally fallen into three categories:
prohibition of new and existing sources emitting pollution in
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excess of the ambient air quality standards, controls and per-
mitting requirements for new sources, and specific pollution
problems such as hazardous air pollutants and visibility im-
pairment (Brownell, 1999).

The current regulatory process requires sources to demon-
strate, by either sufficient sampling or dispersion modeling,
that the source’s off-property concentrations do not exceed
the NAAQS. In a recent effort in permitting a cotton gin, the
regulatory entity opted to base the permit requirements on
modeling results as compared to on-site sampling results.
Given that a source’s right to operate could hinge primarily
on modeled property-line concentration estimates, it is
essential that the most appropriate model be applied.

Industrial Source Complex (ISC) is the model currently
used by most SAPRAs for low-level point sources such as
cotton gins, feed mills, and grain elevators, as well as larger
industrial sources such as power plants. ISC, like many
EPA-approved models, is a Gaussian-based model. The
accuracy of Gaussian-based dispersion models has long been
debated (Beychok, 1996). One major issue associated with
the models’ accuracy relates to determining the most
appropriate time averaging period to use in defining plume
spread (Williams, 1996; Beychok, 1994). The primary
parameters involved in defining the degree of plume spread
as a function of averaging time are the dispersion coefficients
(�y and �z), which are directly related to the plume height and
width, respectively, at any point downwind of the source.

This article focuses on the development of the commonly
accepted and used Pasquill-Gifford (PG) dispersion coeffi-
cients, with emphasis on the horizontal dispersion coeffi-
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cient. Mathematically, these parameters are the standard
deviations of a normally distributed plume in the horizontal
and vertical planes, and are correlated to atmospheric
stability. For example, unstable atmospheric conditions
correspond to greater wind speed and direction variations
than stable atmospheric conditions. Therefore, greater plume
spread would be expected under unstable conditions as
compared to stable conditions.

THE GAUSSIAN MODEL
All Gaussian-based dispersion models are based on the

assumption that the concentration of a pollutant in both the
vertical and horizontal plane, at a given downwind distance
from a source, can be represented by a normal, or Gaussian,
distribution (fig. 1). The degree of spread associated with
normal distributions is a function of both the downwind
distance and the variation in wind direction and wind speed,
and is represented by the dispersion coefficients �y and �z.
Note that the dispersion coefficients (�y and �z) are the
standard deviations associated with the normal distribution in
the vertical and horizontal planes, respectively, represented
in the Gaussian equation. The general form of the Gaussian
dispersion equation is shown in equation 1 (Cooper and
Alley, 1994):
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where
C = steady-state concentration at a point (x,y,z) (�g/m3)
Q = emission rate (�g/s)
�y = horizontal dispersion coefficient (m)
�z = vertical dispersion coefficient (m)

u = wind speed at stack height (m/s)
y = horizontal distance from plume centerline (m)
z = height of receptor with respect to ground (m)
H = effective stack height (m, H = h + � h, where h =

physical stack height, and � h = plume rise).
Notice that the Gaussian equation is simply the ratio of

emission rate over wind speed multiplied by two normal
density functions: one for the horizontal direction, and the
other for the vertical direction. Assuming that all source
parameters are available and the desired receptor locations
are known, the only unknowns in the Gaussian equation are
wind speed and the dispersion coefficients. Wind speed is
obtained directly from meteorological data, and the disper-
sion coefficients are determined based on the degree of
recorded atmospheric stability.

ATMOSPHERIC STABILITY CLASSIFICATION AND DISPERSION

COEFFICIENTS ESTIMATES

The Pasquill-Gifford (PG) dispersion coefficients asso-
ciate observed plume spread data with the Pasquill atmo-
spheric stability classes (Seinfeld and Pandis, 1998). The
most frequently used classification system of atmospheric
stability was developed by Pasquill (U.S. EPA, 1996). These
stability classes were developed to allow the Gaussian
dispersion equation to be evaluated with readily available,
simple meteorological data (Pasquill and Smith, 1983). The
stability classes represent different meteorological turbu-
lence conditions, which correspond to wind speed ranges and
either solar radiation (daytime) or cloud cover (nighttime)
(Barratt, 2001; Pasquill and Smith, 1983), as shown in
table 1.

There is some difference of opinion surrounding the time
period of application associated with the PG dispersion
coefficients. The most appropriate application time period
would be that for which the individual plume spread
concentration data were recorded. Present models, such as
ISC version 3 (ISC3), apply the dispersion coefficients to

Figure 1. Graphical representation of normal distributions in the vertical and horizontal planes in the Gaussian dispersion model (Cooper and Alley,
1994).
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Table 1. Stability classifications (Cooper and Alley, 1994).

Surface Solar Radiation[a]
Cloud Cover

[b]Surface
Wind

Solar Radiation[a]

(Day)

Cloud Cover
(Night)[b]Surface

Wind
Speed

(Day)
Cloudy Clear

Wind
Speed
(m/s) Strong Moderate Slight

Cloudy
(>4/8)

Clear
(<3/8)

<2 A A-B[c] B
2-3 A-B B C E F
3-5 B B-C C D[d] E
5-6 C C-D D D D
>6 C D D D D

[a] Strong insolation corresponds to sunny midday in midsummer in En-
gland; slight insolation corresponds to similar conditions in winter.

[b] Night refers to the period from 1 h before sunset to 1 h after sunrise.
[c] For A-B, etc., take the average of the values for A and B.
[d] The neutral class (D) should also be used, regardless of wind speed, for

overcast conditions during day or night and for sky conditions during the
hour preceding or following night, as defined above.

calculate 1 h concentration estimates, while the classical
Gaussian dispersion equation (applying the PG stability pa-
rameters) is cited to return 10 min concentrations (Cooper
and Alley, 1994). Williams (1996) demonstrated that 1 h con-
centration values obtained from the ISC Screen3 (a simpli-
fied screening algorithm) model equaled the 10 min Gaussian
dispersion model (eq. 1) concentrations.

There have been other interpretations of the application
time period for the PG dispersion coefficients. Zannetti
(1990), referencing Gifford (1961), stated that �y and �z were
derived based on concentration readings taken every 3 min.
Pasquill (1961) also denotes that the plume concentration
measurements used in developing the dispersion coefficients
were based on 3 min source releases. Venkatram (1995),
alluding to the Project Prairie Grass experiment that was the
basis for Pasquill’s dispersion coefficient estimates, states
that the experiment consisted of tests lasting about 10 min in
length. Cooper and Alley (1994) explicitly state that the
“concentration  predicted by [the Gaussian model], using the
�y and �z values from [the Pasquill-Gifford-Turner curves] is
a 10-minute-averaged concentration.” Given the variation of
time periods cited in the literature, there is no universally
agreed upon time of application. Beychok (1996) provided a
good summation of this issue, which is restated in the
following paragraph:

“A major problem with the Gaussian dispersion equation
is defining what the calculated concentration C represents
when using Pasquill’s dispersion coefficients. D. B. Turner
states that C represents a 3- to 15-minute average; and
American Petroleum Institute dispersion modeling publica-
tion believes C represents a 10- to 30-minute average; S. R.
Hanna and P. J. Drivas believe C is a 10-minute average; and
others attribute averaging times from 5 minutes to 30 min-
utes. Most agree on a range of 10 minutes to 15 minutes.
However, many Environmental Protection Agency computer
models used to determine regulatory compliance assume that
the Gaussian dispersion equation yields 60-minute averaged
concentrations.”

The original development of the dispersion coefficients
relied on visual observations of plume spread resulting from
test releases. The visible edge of the plume was defined as the
point at which the concentration was 10% of the centerline
(maximum) concentration (Gifford, 1961). Assuming the
crosswind plume concentration is normally distributed with
the ordinate at the plume centerline, an expression relating

concentration at some distance from the ordinate as a
percentage of the ordinate concentration can be developed.
Using the normal density function and trigonometric rela-
tionships, the value of the horizontal stability parameter (�y),
which is the standard deviation associated with the horizontal
distribution in the Gaussian equation, can be expressed in
terms of the degree of plume spread (�) and the downwind
distance (x) from the source (Gifford, 1961). Gifford (1961)
presented this relationship as a means of calculating �y based
on observed plume spread data. This relationship is shown in
equation 2:
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Plume spread (�) is dependent on the stability class.
Pasquill’s (1961) estimates of � for each stability class are
given in table 2. These values are based on data collected
during Project Prairie Grass. This project consisted of 70
trials conducted in the summer of 1956 in flat, open prairie
country in north-central Nebraska. Each of the 70 trials
consisted of releasing sulfur dioxide continuously for several
minutes. As the gas plume moved downwind, sensors located
along arcs from 50 to 800 m downwind measured the sulfur
dioxide content. These observations, along with observations
from other similar experiments, were used to develop
equations describing plume spread under different atmo-
spheric stability classes.

As previously noted, the dispersion coefficient values
were determined based on observed data, and were devel-
oped only as estimates to be used when vertical and
horizontal wind direction fluctuation data were unavailable.
Pasquill (1961) recommended using the fluctuation data over
the estimated data. The observed plume spread and plume
height values reported by Pasquill (1961) were based on
observations resulting from “short releases (a few minutes)”
(Pasquill, 1961). Turner (1994) interpreted “a few minutes”
as approximately 10 min. Turner (1994) states Pasquill later
clarified the averaging time as being 3 min. Trinity
Consultants (2000), a leading developer of the Industrial
Source Complex (ISC) model, stated that “if these parame-
ters are used for hourly periods, they are representing those
rather extreme hourly periods in which the wind is steady and
the mean wind directions of the 20 three-minute periods in
the hour are all the same.”

In order to address this issue, Zwicke (1998) incorporated
2 min meteorological data (averaged wind speed and
direction) into the modeling algorithm. Zwicke (1998)
conducted a series of controlled pollutant release and
measurement tests. Each release was modeled using ISC
Short Term (ISCST) and a new model (Gaussian dispersion
equation, with C being equal to a 2 min concentration). The
modeled concentrations were compared to the measured
values. Zwicke (1998) reported that ISCST overpredicted the
measured concentrations by 2.5 to 10 times, while the new

Table 2. Pasquill’s (1961) estimates of lateral plume spread (�, in
degrees) by stability classification and downwind distance.

Downwind Stability ClassDownwind
Distance (km) A B C D E F

0.1 60 45 30 20 15 10
100 20 20 10 10 5 5
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model predictions were approximately 2.5 times the mea-
sured concentrations. The major challenge associated with
this model was the requirement for refined meteorological
data (2 min averages versus 1 h averages), as most State Air
Pollution Regulatory Agencies (SAPRAs) collect meteoro-
logical data in 1 h intervals. Using 1 h meteorological data is
in accordance with the EPA guidelines entitled Meteorologi-
cal Monitoring Guidance for Regulatory Modeling Applica-
tions (U.S. EPA, 2000).

OBJECTIVES

The major emphasis of this article is to examine the form
and function of the horizontal dispersion coefficient (�y).
Beychok (1994) reasons that the vertical dispersion coeffi-
cient (�z) would remain constant regardless of averaging
time, as the standard deviation of the vertical wind direction
will show very little increase over long sampling times. This
article focuses on a methodology for estimating an appropri-
ate time reference for which the theoretical degree of
dispersion matches that estimated using the PG horizontal
dispersion coefficient.

METHODS
A theoretical “tracer” tracking model was developed to

determine plume spread based on recorded meteorological
data. Based on the determined theoretical plume spread over
a number of averaging times, corresponding dispersion
coefficients were calculated. These theoretical dispersion
coefficients were compared to the PG dispersion coefficients
for each averaging time as a means of evaluating the degree
of meteorological variation accounted for by each class of PG
dispersion coefficients. Graphical analysis of the resulting
data allowed for inferences to be made on time averaging
periods most suited to the PG dispersion coefficients for the
meteorological  data used in the analysis. The developed
methodology will be used in future research to calculate
dispersion coefficients for specific averaging times and
meteorological data characteristics. These steps are ex-
plained in greater detail in the following sections.

DEGREE OF PLUME SPREAD AS A FUNCTION OF TIME

The analysis algorithm developed as a part of this research
to estimate plume spread based on recorded meteorological
data assumes that the spread of a pollutant in the air is
predominately  convection driven. In other words, the
pollutant diffusion as it travels downwind is negligible when
compared to wind transport. It was also assumed that the
pollutant’s travel speed and direction are dictated by wind
speed and direction, and changes in travel speed and direction
are instantaneous with changes in wind speed and direction.

For this study, meteorological data were collected in 15 s
intervals using a Campbell Scientific CR10X datalogger with
sensors for temperature, relative humidity, barometric pres-
sure, solar radiation, wind speed, and wind direction. The
meteorological  station was set up in the middle of a large, flat,
open, grass field in College Station, Texas. Data were
downloaded daily from 20 February through 25 March 2002.
Although monitoring was constant throughout this time
period, due to technical problems with the power supply and
the wind speed and direction sensors, only 22 full days of
meteorological  data were collected. As part of the data

reduction process, wind speed and direction data for any calm
periods (<0.5 m/s, the threshold of the wind speed sensor)
were replaced with values based on averages of wind speed
and direction from the nearest (timewise) non-calm period
that preceded the calm period. For multiple calm periods,
wind speed and direction data were based on averages of the
nearest non-calm period preceding the group of calm periods.
The U.S. EPA (2000) recommends replacing calm periods
with the threshold wind speed (1 m/s in referenced document)
for use in Gaussian-based modeling. The averaging method
presented here was used to provide better continuity of the
meteorological  data.

Using the collected meteorological data, “tracer” paths
were traced from a common point of origination (i.e., the
source), and were tracked as they traveled downwind.
Tracers are used as entities with no inherent properties whose
travel paths are dictated by instantaneous changes in wind
speed and direction of the associated time period. Tracers
neither grew nor diffused into the surrounding air volume,
nor had any interaction affects with the surrounding air
volume. Additionally, topography was not considered in
tracer paths, i.e., topography was assumed to be flat and level.

Tracers were released at the beginning of each meteoro-
logical data interval. For example, at time t = 0, tracer 1 was
released, and at time t = 15 s, tracer 2 was released. All tracers
originated at the origin (0,0). The travel path of each tracer
was tracked mathematically based on the average wind speed
and direction recorded for each 15 s interval. For each time
interval, the distance traveled was determined using the wind
direction, wind speed, and time interval (t = 15 s).

These tracer paths were used to determine the plume
spread at various downwind distances. A tracer path plot
based on a 10 min period of collected meteorological data is
shown in figure 2. Each individual tracer path in figure 2
resulted from tracing a unique parcel release and its
subsequent downwind travel as a result of wind speeds and
directions from the subsequent time intervals. The distances
in the horizontal plane and the average wind direction for the
period were used to establish a line perpendicular to the
average wind direction at a distance from the source that
corresponds to the downwind distance. The point where the
average wind direction vector and the perpendicular down-
wind line intersect was denoted as the plume center. Figure 3
is a simplified illustration showing how, for each parcel path
crossing, the length from the plume center (I2) to the point in
the plume where the tracer crosses (I1) was determined. This
length is denoted as W and was determined for each tracer
path. For a given time period, W can be plotted and fitted to
a normal distribution, as shown in figures 4 and 5. From this
fit, the plume spread parameter (�y), referred to as �y BKF, can
be determined.

When determining the total plume spread based on the W
values, the associated time period was based on the number
of tracers crossing the downwind distance line. For instance,
a 2 min concentration based on 15 s interval meteorological
data would require eight tracers crossing the line representing
the downwind distance (8 × 15 s = 120 s = 2 min). For initial
iterations, total plume width values were calculated for each
time interval using only meteorological data for the time
period of interest. For example, a 3 min block of meteorologi-
cal data would be used for a 3 min plume width. This
approach resulted in some plume widths that were based on
fewer than the required number of W values (i.e., a 3 min
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Figure 2. Theoretical 10 min tracer path in the horizontal plane using measured 15 s interval meteorological data. Tracer path lines are extending in
the averaged direction of the wind.

plume width should be based on 12 tracer crossings, whereas
some were based on less than 12). The reason for this deficit
in W values was the lag time associated with the transport of
the tracer from the source to the downwind line. For example,
for a 2 m/s wind speed, a tracer will only travel 30 m in one
15 s time interval (2 m/s × 15 s = 30 m). If the wind speed
remained constant for the remaining time intervals, four 15 s
intervals would be required for the tracer to cross the 100 m
downwind line, assuming straight-line travel. When the
downwind distance is 500 to 1000 m, the lag time becomes
quite large. At large downwind distances, there are no tracer
crossings within the set time period. Lag time was incorpo-
rated to account for this problem.

For a specific time interval, a clock was started after the
first tracer crossed the downwind line. When the clock
indicated the specified time interval had elapsed, plume
tracing was stopped. The plume width was calculated based
on the tracer crossings (W) recorded during the analysis.

As an example, for a given hour of meteorological data,
the 10 min plume widths are to be calculated. Examining the
first 10 min of data at 500 m downwind, for a wind speed of
3 m/s, the first tracer would not cross the downwind line until
a minimum 2 min and 47 s had elapsed. Assuming a tracer
crossed every 15 s for the remaining data intervals, the 10 min
plume width would actually be based on 12 to 13 min of
meteorological  data. Similarly, a 60 min plume width might

Origin

Average
Wind Direction

Downwind
Distance Line

P1 P2

I1

I2

W

Figure 3. Graphical representation of the methodology used to calculate
W using theoretical tracer path data: P1 and P2 are initial and final (x,y)
coordinates of the parcel’s last incremental movements, I1 is the (x,y)
coordinate where the P1-P2 vector intersects the downwind distance line,
I2 is the (x,y) coordinate where the average wind direction line (i.e., plume
centerline) intersects the downwind distance line, and W is the distance be-
tween I1 and I2.

be based on more than 60 min worth of meteorological data.
The average and standard deviations of wind direction and
speed were based on the total time period over which plume
tracing occurred. As such, the 10 min plume width mentioned
above would be associated with meteorological data statis-
tics for 12 to 13 min.

The W values for each time period of interest were then fit
to a normal distribution (to meet the assumption of a normally
distributed plume associated with Gaussian modeling), and
the standard deviation were determined. As an example, for
a given hour, the first step was to calculate W values and
meteorological  statistics (incorporating data from the lag
time period) for each consecutive 2 min data period, and then
to fit the W data for each period to a normal distribution and
determine the associated standard deviation (denoted �y).
This process was then repeated for 3 min data intervals, for
5 min data intervals, etc., up to a single 60 min data interval
corresponding to each hour. Note that for each individual
time period, the data interval stability classification (which
will be discussed in the next section) was determined.

Figures 4 and 5 are based on the example plume trace in
figure 2. The standard deviation associated with the normal
distribution fitted to the W values is 18.6 m at 100 m
downwind for a 10 min period (fig. 4). Similarly, for 400 m,
the standard deviation (�y) is 64.3 m (fig. 5).

This methodology was used to develop a FORTRAN
program to perform similar data reduction over the entire set
of meteorological data. Each hour of collected meteorologi-
cal data was analyzed for 2, 3, 5, 10, 15, 20, 30, and 60 min
intervals, and at 100, 200, 300, 400, 500, 600, 700, 800, 900,
and 1000 m downwind. For each interval and downwind
distance combination (�y BKF), average values of wind speed,
wind direction, and solar radiation and the standard devi-
ations of wind speed and wind direction were determined.
The meteorological data statistics incorporate the lag time
period’s meteorological data, as discussed earlier.

ESTIMATION OF STABILITY CLASSIFICATION
The next step was to compare the �y BKF values to the

corresponding �y PG (the horizontal PG dispersion coeffi-
cient) values for each stability class, time interval, and
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Figure 4. Histogram and normal distribution fit of plume width values (W)
as determined from theoretical parcel trace data at 100 m downwind
(�y BKF = 18.6 m).
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Figure 5. Histogram and normal distribution fit of plume width values (W)
as determined from theoretical parcel trace data at 400 m downwind
(�y BKF = 64.3 m).

downwind distance combination. The stability class for each
interval of data was determined in order to calculate �y PG.
There are several methods available for estimating the PG
stability classification using measured meteorological data.
The first method employed was the solar radiation/�T
(SRDT) method (U.S. EPA, 2000). This method differenti-
ates daytime stability classes using the measured solar radi-
ation (W/m2) and wind speed ranges (m/s), as indicated by
the EPA’s Meteorological Monitoring Guidelines (U.S. EPA,
2000). Likewise, the nighttime stability classifications are
differentiated using the �T (vertical temperature gradient)
and wind speed ranges (U.S. EPA, 2000). The second method

Table 3. Summary statistics of meteorological
data used in time frame analysis study.

Stability
Class

Total Hours
during
22 Day
Period

Average
Wind
Speed
(m/s)

Wind Speed
Standard
Deviation

(m/s)

Wind
Direction
Standard

Deviation (°)
B 41 2.7 0.94 28.4
C 121 3.8 0.85 14.3
D 328 3.8 0.77 10.2
E 46 2.6 0.43 7.1
F 6 1.5 0.37 13.6

Table 4. Total number of data points for each time
interval of interest within each stability class.

Stability Time Interval (min)Stability
Class 2 3 5 10 15 20 30 60

B 1230 820 492 246 164 123 82 41
C 3630 2420 1452 726 484 363 242 121
D 9840 6560 1936 1968 1312 984 656 328
E 1380 920 552 276 184 138 92 46
F 180 120 72 36 24 18 12 6

used to estimate the PG stability classes is referred to as the
SigmaA (standard deviation of the horizontal wind direction)
method (U.S. EPA, 2000).

Both of these methods were used and compared against
each other using the 1 h averaged data for each hour of
collected data. It was found that for estimates of daytime
stability using the measured meteorological data, 75.7% of
the estimates from the two methods agreed and 93.4% of the
estimates were within one stability class of each other. For the
nighttime stability class determination, only the SigmaA
method was employed, as the temperature gradient required
temperature measurements at heights of 20zo to 100zo (where
zo is the surface roughness height, about 0.03 m for the
present location), which were unavailable. For the purpose of
assigning a stability class for determining the PG stability
parameter, the solar radiation method was used for daytime
meteorological  data intervals (solar radiation >0 W/m2) and
the SigmaA method was used for nighttime meteorological
data intervals (solar radiation <0 W/m2).

RESULTS AND DISCUSSION
For each hour of measured meteorological data, �y BKF, �y

PG, and the ratio of �y PG/�y BKF were determined for each
time interval and downwind distance combination. For
example, for a given hour of meteorological data, using 2 min
time intervals, there would be 30 data sets with �y BKF, �y PG,
and the ratio of �y PG/�y BKF, with each set of data being
representative  of a different 2 min interval. Similarly, for the
3, 5, 10, 15, 20, 30, and 60 min time intervals, the number of
data sets would be 20, 15, 6, 3, 2, and 1, respectively. When
�y BKF equals �y PG, the ratio equals 1 and the associated time
interval and degree of meteorological variation is equivalent
to that accounted for by the horizontal PG dispersion
coefficient. If the ratio is greater than 1, then the horizontal
PG dispersion coefficient overestimates the plume spread.
For a ratio less than 1, the plume spread is underestimated by
the horizontal PG dispersion coefficient. For example, for
given a 5 min interval, if �y BKF and �y PG are equal, then the
horizontal PG dispersion coefficient could be appropriately
applied. For each stability class, time interval, and downwind
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Figure 6. Ratio of �y PG to �y BKF for stability class B as a function of meteorological data, time interval, and downwind distance from the source.

distance combination, the average and standard deviation of
the ratio data were determined. It should be noted that no data
were available for stability class A, as there were no complete
hours that were classified as such. Table 3 is a summary of the
meteorological  data by stability classification. Figures 6
through 10 are plots of the ratio of �y PG to �y BKF for each
stability class and each downwind distance within each sta-
bility class. The number of data points averaged for each
point plotted in figures 6 through 15 can easily be determined
by taking the total number of hours within the given stability

class and multiplying by the number of data sets for each time
interval. These values are given in table 4.

In general, the time interval of agreement (where the ratio
is equal to 1; represented in the graphs by a dotted line) is
between 2 and 40 min for all stability classes. For all stability
classes, as the distance from the source increases, the time
interval of agreement also increases. The reason for this is
that the further a receptor is from a source, the less will be the
impact due to variations in meteorological conditions. From
these graphs, it can be concluded that applying the horizontal
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Figure 7. Ratio of �y PG to �y BKF for stability class C as a function of meteorological data, time interval, and downwind distance from the source.
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Figure 8. Ratio of �y PG to �y BKF for stability class D as a function of meteorological data, time interval, and downwind distance from the source.

PG dispersion coefficient to a 1 h time period is not appropri-
ate and will result in concentration predictions that
are excessive (i.e., �y PG is smaller than �y BKF; thus, the asso-
ciated degree of plume spread will be less). Figures 11
through 15 are plots of the �y BKF values with 95% confidence
intervals along with the �y PG values for each stability class,
downwind distance, and time interval combination.

When examining figures 11 through 15, notice how the
value of �y BKF changes with the time interval of applied

meteorological  data. As the time interval of the meteorologi-
cal data increases, both the mean and the confidence interval
associated with �y BKF increase. In addition, as the distance
from the source increases, the widths of the �y BKF confidence
intervals increase. In general, as the meteorological time
interval increases, the average value of �y BKF also increases.
Notice also that for stability class F (fig. 15) the mean and the
confidence interval of �y BKF increase greatly with time
interval and downwind distance, much more so than for the
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Figure 9. Ratio of �y PG to �y BKF for stability class E as a function of meteorological data, time interval, and downwind distance from the source.



1193Vol. 48(3): 1185−1196

0 20 40 60

0

2

4

6

8

100 m
200 m
300 m
400 m

500 m
600 m
700 m
800 m
900 m
1000 m

y
y

Stability Class F

Meteorological Data Interval (min)

R
at

io
 o

f 
P

G
 S

ig
m

a
to

 B
K

F
 S

ig
m

a

Figure 10. Ratio of �y PG to �y BKF for stability class F as a function of meteorological data, time interval, and downwind distance from the source.

other stability classes. One reason for this is that stability
class F is associated with light and variable winds, which will
cause the plume to meander to a greater degree than in other
stability classes. As downwind distance increases, this mean-
dering effect has a more significant impact on plume spread.
An additional factor is the small number of data points, espe-
cially for the longer time intervals, which would result in
large confidence intervals, especially given the inherent vari-
ability within this stability class.

The most appropriate time frame for each stability class
and downwind distance combination can also be observed
from figures 11 through 15. For each combination of
downwind distance and stability class, the most appropriate
time period of application corresponds to the time interval
where the mean �y BKF is equal to the value of �y PG. For
example, from figure 11 (stability class B) at a distance of
100 m, �y BKF and �y PG are equal for the 3 min interval data.
The actual �y values may be greater, lesser, or equal to �y PG
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Figure 11. Pasquill-Gifford (PG) �y and 95% confidence interval and mean of �y BKF by meteorological time interval and downwind distance combina-
tions for stability class B data.
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Figure 12. Pasquill-Gifford (PG) �y and 95% confidence interval and mean of �y BKF by meteorological time interval and downwind distance combina-
tions for stability class C data.

depending on meteorology. For example, for stability class C
and 300 m downwind, �y PG would be 31.7 m. From this re-
search, the value of �y BKF at 300 m downwind based on 1 h
of meteorological data classified as stability class C is on av-
erage twice the value of �y PG and could range from 15 to 110
m (based on fig. 12). Table 5 is a summary of the most ap-

propriate time intervals for the combinations of stability class
and downwind distance.

The degree of variation in �y BKF differs from one stability
class to another. For example, by moving from stability class
B to D, the overall variance in �yBKF decreases, i.e., the width
of the �y BKF confidence intervals decreases. Further, when
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Figure 13. Pasquill-Gifford (PG) �y and 95% confidence interval and mean of �y BKF by meteorological time interval and downwind distance combina-
tions for stability class D data.
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Figure 14. Pasquill-Gifford (PG) �y and 95% confidence interval and mean of �y BKF by meteorological time interval and downwind distance combina-
tions for stability class E data.

moving from stability class A to D, the stability of the meteo-
rological parameters increases. For example, an hour
corresponding to stability class A will have a greater varia-
tion in wind direction and a lower wind speed than an hour
corresponding to stability class C or D. Therefore, it would
be expected that the more stable daytime stability classes
(i.e., C and D) would be associated with not only smaller hori-

zontal dispersion coefficients, but also smaller variation in
the range of the horizontal dispersion coefficient. This brings
up another important point that can be observed from figures
11 through 15. The confidence intervals on �y BKF from one
stability class to another are not exclusive. In other words,
stability classes A, B, or C could all have hours where the de-
grees of plume spread are equal.
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Figure 15. Pasquill-Gifford (PG) �y and 95% confidence interval and mean of �y BKF by meteorological time interval and downwind distance combina-
tions for stability class F data.



1196 TRANSACTIONS OF THE ASAE

Table 5. Appropriate time intervals (min) for applying the Pasquill-Gifford dispersion coefficient (�y PG).

Stability Downwind Distance (m)Stability
Class 100 200 300 400 500 600 700 800 900 1000

B 3 5 5-10 5-10 10 10-15 15 15-20 15-20 20
C 2-3 3-5 5 5-10 10 10-15 15 20 20-30 30+
D 2 3 5 10 15 20 20-30 30 30 30+
E 2-3 10 15 20 30 30 30-60 30-60 60 60
F 2-15 5-15 10-15 15-20 15-20 15-20 15-20 20 20 20+

CONCLUSION
The goal of this research was the development of a model

that accounts for variations in sub-hourly meteorological
conditions, yet can be used with hourly meteorological data.
The first step in this process was to gain a greater
understanding of how, and to what degree, the current models
account for these variations. A methodology was developed
to determine plume spread for multiple time intervals and
downwind distance combinations using small-time-interval
(less than hourly) meteorological data. The plume spread
values were used to calculate an “observed” horizontal
dispersion coefficient (�y BKF). This observed value was then
compared with the Pasquill-Gifford predicted dispersion
coefficient (�y PG). This comparison allowed for an appropri-
ate application time period to be determined, which in
general, was less than 20 min.

The most critical finding of this research was that applying
the horizontal PG dispersion coefficients to a 1 h time period
may result in overestimated downwind concentrations. It was
found that the appropriate time interval for application of the
horizontal PG dispersion coefficients varied widely depend-
ing on the corresponding meteorological variations. The
approach of using a single-point estimate of �y, based on
stability class and downwind distance and with no regard for
observed variations in wind speed and direction, cannot
account for the range of observed values of �y found in this
research. Future research will detail how the methodology
discussed in this article can be used to estimate horizontal
dispersion coefficients that account for these meteorological
variations.
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